
Introduction to Generative Urban Models
Prof. Dr. Reinhard König

www.uni-weimar.de/computational-architecture
reinhard.koenig@uni-weimar.de

Winter Semester 2016

Com
putat
ional Arc
hitecture

Junior
Professor
Dr. König
Reinhard

mailto:reinhard.koenig@uni-weimar.de

Chapter 01 // Introduction

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 3

With a double click on the C# component you open the integrated develop-
ment environment (IDE), which we use to enter our code:

So far you managed the setup. Now let’s start with our first lines of code!

1.	 Introduction
This script accompanies the seminar Computational Urban Synthesis by
thee Junior-Professorship Computational Architecture at the Bauhaus Uni-
versity Weimar. It helps you with your first steps into the world of program-
ming.

As development environment we use the C# component in Grasshopper
for Rhino3D. This allows us to link our code directly with other Grasshopper
components and to work directly with the 3D capabilities of Rhino3D.

1. 1.	 Start Rhino and Grasshopper
We assume that you are familiar with the basic controls and functions in
Rhino and Grasshopper. Just as a reminder, you start Grasshopper by typ-
ing “Grasshopper” into the Command line at the top right of the Rhino user
interface (UI):

This command opens the Grasshopper UI. The C# component can be found
at the Maths tab. Alternatively double click on the empty dashboard and en-
ter “C#” and select the C# Script component. Additionally we need a Panel,
which is connected to the out parameter of the C# component as shown in
the following. The Panel is used later to show some output massages from
our code.

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 4

1. 3.	 Variables
A variable can be compared to a storage room, and is essential for the pro-
grammer. In C#, a variable is declared like this:

	 <data type> <name>;

An example could look like this:

	 string myName;

That’s the most basic version. If we use the variable as a global variable, we
have to assign a visibility to the variable, and perhaps assign a value to it at
the same time. It can be done like this:

	 <visibility> <data type> <name> = <value>;

And with an example:
	 private string myName = “John Doe”;
Now, we have enough theory to start with a first simple example.

1. 4.	 Hello World
In our first example we declare a variable and assign a value to it:
private void RunScript(object x, object y, ref object A)
 {
 string myString = “Hello World”;
 Print(myString);
 }

With this example we also see the idea of the Panel, which shows the
printed values. This means the Print command sends its values to the out
parameter of the component. We also get all kinds of error messages to this
out parameter and our panel.

1. 2.	 Data types
Computer programs, including spreadsheets, text editors, calculators, or
chat clients, work with data. Tools to work with various data types are es-
sential part of a modern computer language. A data type is a set of values
and the allowable operations on those values.

Data types are used everywhere in a programming language like C#. Be-
cause it’s a strongly typed language, you are required to inform the compiler
about which data types you wish to use every time you declare a variable.
In this chapter we will take a look at some of the most used data types and
how they work.

Boolean values

bool is one of the simplest data types. It can contain only 2 values - false or
true. The bool type is important to understand when using logical operators
like the if statement.

Strings

string is used for storing text, that is, a number of chars. In C#, strings are
immutable, which means that strings are never changed after they have
been created. When using methods which changes a string, the actual
string is not changed - a new string is returned instead.

Integers

int is short for integer, a data type for storing numbers without decimals.
When working with numbers, int is the most commonly used data type.
Integers have several data types within C#, depending on the size of the
number they are supposed to store.

Floating point numbers

float or double are one of the data types used to store numbers which may
or may not contain decimals.

There is much more to say about data types and there are many more types
in each category, but for the beginning it’s fine if you remember the listed
ones.

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 5

In the preset of Rhino you have a gray background with a grid. You may
change this to a white background without grid as I’ve done it for the
examples. Therefore go to View / Display Options and look into the Grid
options of the dialog. You can also increase the line width (for all lines in the
display) in this dialog box for each display mode. We use Wireframe and
change the widths for the Objects Curves to 4, so that we see a thicker line
in the display.

In a next step we can use the parameters x an y, which are the predefined
input parameters for our C# component. Therefore we change the toPt
declaration as follows:
	 Point3d toPt = new Point3d(x, y, 0);

If you click OK, you receive an error message in the panel. This is because
we need to define the input parameters of the C# components first. This
can be done by right click on the x and y parameter and selecting Type hint
/ double. The simplest way to assign a parameter value is by right click on
he x and y parameter of the component again and entering a value at Set

This value in our example is the string “Hello World”, which is send to the
print command and finally shown on the panel. Of cause this in not a really
exiting example and there is no geometry created in Rhino. Therefore next
we look into an example to use a simple parametrized line geometry.

1. 5.	 Create lines
In the next example we create our first Rhino geometry from our C# com-
ponent. The following code create a line from a starting point fromPt to a
destination point toPt. The line itself is represented by the variable myLine in
line number 8. It is initialized by using the two points as arguments. In this
code example the two lines of our first example are deactivated (comment
out) by the // at the beginning of a line of code:
1 	 private void RunScript(object x, object y, ref object A)
2 	 {
3 	 //string myString = “Hello World”;
4 	 //Print(myString);
5
6 	 Point3d fromPt = new Point3d(0, 0, 0);
7 	 Point3d toPt = new Point3d(25, 12, 0);
8 	 Rhino.Geometry.Line myLine = new Line(fromPt, toPt);
9 	 A = myLine;
10	 }	

The created line is only drawn to Rhino after we assign it to the output
parameter A in line 9.
We introduced in this example classes or objects, which comes from
Rhino. The Point3d is an object from the namespace Rhino.Geometry,
which you can find in the using list at the top of our C# IDE component. If
we include the namespace in the using, we don’t need to write it in front of
the object we want to use. Whereas in line 8 you can see that we used the
namespace. Delete the .Line after Rhino.Geometry. and add a new point
after Rhino.Geometry. This opens a list of optional classes that are offered
by . Rhino.Geometry. This list of possible features is called IntelliSense.
After clicking the OK button in the C# editor you should see your first line in
Rhino! If you change now the coordinates for the fromPt and toPt, the line
is drawn correspondingly. This is the core idea of parametric modeling.

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 6

You find new comments elements in the code example. Our old code is out
commented by using a slash-star star-slash syntax /* ... */. Using this
the code from line 3 to line 8 is deactivated.

Another important, but often forgotten element are comments in your code,
which explains what happens. In the example you find them in line 10, 16,
and 21. You can’t add enough of them. Belief me, you will forget what your
code means very soon and wish you would have added more comments!

From line 11 we define a plane myPlane on which the rectangle is drawn.
The rectangle myRect itself is created from line 17, where we use separate
parameters for width and length, which are used to create the rectangle in
line 19. The code from line 22 is used to make a surface myCurve out of our
rectangle myRect so that we get a better visualization. In line 24 we send
the created surface to the output parameter A of our component. You should
see a simple rectangular surface in your Rhino views:

For the ones who are familiar with Grasshopper: We could also output the
myRect rectangle and use the Boundary Surfaces component to create a
surface out of it. But the idea of this introduction is to learn how things can
be done by code.

Data Item. If you set 25 for x and 12 for y we get the same line as in the
beginning. You can also add a Slider for each input parameter for a more
comfortable control of the values.

1. 6.	 Experiment!
The best way for starting your exploration in the world of coding is to change
existing code. Therefore try to play around with different Rhino objects
and parameter settings! In this section we can only help you with your first
steps, but to learn how to walk confident in this world depends on your
engagement.

The following example draws a rectangle on a defined plane in Rhino:
1 	 private void RunScript(double x, double y, ref object A)
2 	 {
3 	 /*
4 	 Point3d fromPt = new Point3d(0, 0, 0);
5 	 Point3d toPt = new Point3d(x, y, 0);
6 	 Rhino.Geometry.Line myLine = new Line(fromPt, toPt);
7 	 A = myLine;
8 	 */
9
10		 // -- Define the drawing plane
11	 Rhino.Geometry.Point3d firstPt = new Point3d(1, 0, 0);
12	 Rhino.Geometry.Point3d secondPt = new Point3d(0, 1, 0);
13	 Rhino.Geometry.Point3d origPt = new Point3d(0, 0, 0);
14	 Rhino.Geometry.Plane myPlane = new Plane(origPt, firstPt, 	
		 secondPt);
15		
16		 // -- create a rectangle
17	 double width = 10;
18	 double length = 20;
19	 Rhino.Geometry.Rectangle3d myRect = new Rectangle3d(myPlane,
		 width, length);
20
21		 // -- convert the recangle to a nurbs and create a planar Brep
	 	 Surface in Rhino
22	 NurbsCurve myCurve = myRect.ToNurbsCurve();
23	 Brep myBrepSurface = Rhino.Geometry.Brep.
		 CreatePlanarBreps(myCurve)[0];
24	 A = myBrepSurface;//myRect;
25	 }

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 7

private void RunScript(double x, double y, ref object A)
 {
 int number = 0;

 do
 {
 Print(number.ToString());
 number = number + 1;
 } while(number < 5);
 }

The output is the same though - once the number is more than 5, the loop is
exited.

The for loop

The for loop is a bit different. It’s preferred when you know how many
iterations you want, either because you know the exact amount of iterations,
or because you have a variable containing the amount. Here is an example
on the for loop.
private void RunScript(double x, double y, ref object A)
 {
 int number = 5;

 for(int i = 0; i < number; i++)
 {
 Print(i.ToString());
 }
 }

This produces the exact same output, but as you can see, the for loop is a
bit more compact. It consists of 3 parts - we initialize a variable for counting,
set up a conditional statement to test it, and increment the counter (++
means the same as “variable = variable + 1”).

The first part, where we define the i variable and set it to 0, is only executed
once, before the loop starts. The last 2 parts are executed for each iteration
of the loop. Each time, i is compared to our number variable - if i is smaller
than number, the loop runs one more time. After that, i is increased by one.

1. 7.	 Loops
So far we have not touched one of the most powerful aspects of
programming: Looping, the ability to do repetitions in an efficient and
elegant way. In C#, looping can be done in 4 different variants, and we will
have a look at each one of them.

The while loop

The while loop is probably the most simple one, so we will start with that.
The while loop simply executes a block of code as long as the condition you
give it is true:
private void RunScript(double x, double y, ref object A)
 {
 int number = 0;

 while(number < 5)
 {
 Print(number.ToString());
 number = number + 1;
 }
 }

You will get a nice listing of numbers, from 0 to 4. The number is first
defined as 0, and each time the code in the loop is executed, it’s
incremented by one. But why does it only get to 4, when the code says 5?
For the condition to return true, the number has to be less than 5, which
in this case means that the code which outputs the number is not reached
once the number is equal to 5. This is because the condition of the while
loop is evaluated before it enters the code block.

The do loop

The opposite is true for the do loop, which works like the while loop in other
aspects through. The do loop evaluates the condition after the loop has
executed, which makes sure that the code block is always executed at least
once.

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 8

Try running the program, and afterwards, try changing the number variable
to something bigger or smaller than 5. You will see the loop respond to the
change.

The foreach loop

The last loop we will look at, is the foreach loop. It operates on collections
of items, for instance arrays or other built-in list types. In our example we
will use one of the simple lists, called an List.
private void RunScript(double x, double y, ref object A)
{
 List<string> list = new List<string>();
 list.Add(“First string”);
 list.Add(“Second string”);
 list.Add(“Third string”);

 foreach(string name in list)
 {
	 Print(name);
 }
}

1. 8.	 Geometry in the Loop
We create an instance of a List that can contain data of the type string, and
then we add some string items to it. We use the foreach loop to run through
each item, setting the name variable to the item we have reached each time.
That way, we have a named variable to print to our panel.

When working with collections, you are very likely to be using the foreach
loop most of the time, mainly because it’s simpler than any of the other
loops for these kind of operations.

Okay, now you know how loops work. Let’s use it for drawing! We use a for
loop to repeat the creation of a line and change the coordinates by using the
variable i that is incremented per iteration. The created lines are collected
by a list, which can contain Line objects List<Line>. This list is returned to
the output parameter A at the end:

1 	 private void RunScript(double x, double y, ref object A)
2 	 {
3 	 int iterations = 10;
4
5 	 // -- create a bunch of lines
6 	 List<Line> collectLines = new List<Line>();
7 	 for(int i = 1; i < iterations; i++)
8 	 {
9 	 // -- create a line in Rhino
10	 Point3d fromPt = new Point3d(i, 0, 0);
11	 Point3d toPt = new Point3d(i, i*(i/10.0), 0);
12	 Line myLine = new Line(fromPt, toPt);
13	 collectLines.Add(myLine);
14	 }
15
16	 A = collectLines;
17	 }

Be aware that it is important to use the explicit floating point number 10.0
in line 11. If you use 10 only, the resulting number is rounded to an int and
you wont see any line. The code above draw this lines:

Play around with this code! For example, change the number of iterations
and the way, how i is used for defining the start and end points of the line.
An important class for calculations is Math. Exchange lines 10 and 11 by the
following:
 	 Point3d fromPt = new Point3d(i, Math.Sin(i / 2.0), 0);
	 Point3d toPt = new Point3d(i, Math.Sin(i / 2.0) * 10, 0);

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 9

The result will change to a sinus wave:

You can access items in a list and change them. In the following we change
the end point of all lines. Therefore we replace the point by a new one:
for(int i = 0; i < collectLines.Count; i++)
{
 Line curLine = collectLines[i];
 Point3d tempPt = curLine.To;
 tempPt.X += 9;
 curLine.To = tempPt;
 collectLines[i] = curLine;
}

A = collectLines;

We could use the foreach loop to iterate through the list, but if we want to
change items in the collection as we do it here, the forech loop don’t allow
changes of its items. The result of our small experiment looks like this:

1. 9.	 Nested Loops
The concept of a loop can be extended to nested loops by placing one loop
into the other. We also use a random function in the following example:
1 	 private void RunScript(int nr, double y, ref object A)
2 	 {
3 	 int iterations = nr;
4 	 Random rnd = new Random();
5 	 List<Brep> collectBreps = new List<Brep>();
6
7 	 // -- Define the drawing plane
8 	 Point3d firstPt = new Point3d(1, 0, 0);
9 	 Point3d secondPt = new Point3d(0, 1, 0);
10	 Point3d origPt = new Point3d(0, 0, 0);
11	 Plane myPlane = new Plane(origPt, firstPt, secondPt);
12
13	 // -- first loop used for x coordinates
14	 for(int i = 0; i < iterations; i++)
15	 {
16	 // -- second loop used for y coordinates
17	 for(int k = 0; k < iterations; k++)
18	 {
19	 // -- create a rectangle
20	 int maxRnd = 10;
21	 double width = 1.0 + rnd.Next(0, maxRnd);
22	 double heigth = 1.0 + rnd.Next(0, maxRnd);
23	 Point3d refPt = new Point3d(i * (maxRnd + 1.1),
			 k * (maxRnd + 1.1), 0);
24	 Point3d cornerA = new Point3d(refPt.X - (0.5 * width),
			 refPt.Y - (0.5 * heigth), 0);
25	 Point3d cornerB = new Point3d(refPt.X + (0.5 * width),
			 refPt.Y + (0.5 * heigth), 0);
26
27	 Rectangle3d myRect = new Rectangle3d(myPlane, cornerA, cornerB);
28
29	 // -- convert the recangle to a nurbs and create a planar Brep
		 	 Surface in Rhino
30	 NurbsCurve myCurve = myRect.ToNurbsCurve();
31	 Brep myBrepSurface = Brep.CreatePlanarBreps(myCurve)[0];
32	 collectBreps.Add(myBrepSurface);
33	 }
34	 }
35
36	 A = collectBreps;
37	 }

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 10

The second, nested loop is added in line 17. This means that per iteration of
the outer loop in line 17, all iterations of the inner loop are executed. Inside
the inner loop we draw a rectangle with random width and height values.
Therefore we use the Random class to declare the rnd variable in line 4. The
function rnd.Next(1, 10) returns a random integer value between 1 and
10. As a result we get a grid of randomly sized rectangles:

It’s time for your own variations!

1. 10.	 Functions
To define your own function is very useful if the code becomes more
complex. Functions allows us to combine logical code parts into one
separate entity. In the following we use a variant of the last example, where
we put the code to create a surface CreateRandomSurface in a function,
which returns the created surface. In the main RunScript procedure our new
function is called from the inner loop in line 12:
1 	 private void RunScript(int nr, double y, ref object A)
2 	 {
3 	 int iterations = nr;
4 	 List<Extrusion> collectBreps = new List<Extrusion>();
6 	 // -- first loop used for x coordinates
7 	 for(int i = 0; i < iterations; i++)
8 	 {
9 	 // -- second loop used for y coordinates
10	 for(int k = 0; k < iterations; k++)
11	 {
12	 Extrusion myExtrudedObject = CreateRandomSurface(i, k);
13	 collectBreps.Add(myExtrudedObject);
14	 }
15	 }
17	 A = collectBreps;
18	 }
19
20	 // <Custom additional code>
21	 private Random rnd = new Random();
22
23	 private Extrusion CreateRandomSurface(int i, int k)
24	 {
25	 // -- create a rectangle
26	 int maxRnd = 10;
27	 double width = 1.0 + rnd.Next(0, maxRnd);
28	 double heigth = 1.0 + rnd.Next(0, maxRnd);
29	 Point3d refPt = new Point3d(i * (maxRnd + 1.1),
			 k * (maxRnd + 1.1), 0);
30	 Point3d cornerA = new Point3d(refPt.X - (0.5 * width),
			 refPt.Y - (0.5 * heigth), 0);
31	 Point3d cornerB = new Point3d(refPt.X + (0.5 * width),
			 refPt.Y + (0.5 * heigth), 0);
33	 Rectangle3d myRect = new Rectangle3d(Plane.WorldXY, cornerA,
			 cornerB);
34	 myRect.Transform(Transform.Rotation(0.3, myRect.Center));
35

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 11

36	 // -- convert the recangle to a nurbs and create a planar Brep
			 Surface in Rhino
37	 NurbsCurve myCurve = myRect.ToNurbsCurve();
38	 Rhino.Geometry.Extrusion myExtrusion = Extrusion.Create(myCurve,
		 	 rnd.Next(5, 20), true);
39	 return myExtrusion;
40	 }

We changed the created object from a planar surface to an extruded
rectangle. Therefore we use the Extrusion class from Rhino.Geometry.
Additionally we introduce the Transform method, which is used to rotate our
rectangle: myRect.Transform(Transform.Rotation(0.3, myRect.Center));
There are many other transformations available for your explorations! Here
is the result of our example code above:

1. 11.	 Conditions - The if statement
One of the single most important statements in every programming lan-
guage is the if statement. Being able to set up conditional blocks of code is
a fundamental principal of writing software. In C#, the if statement is very
simple to use. The if statement needs a boolean result, that is, true or false.
We start with a very simple example:
 private void RunScript(int nr, ref object A)
 {
 int value = 10 / 2;
 if (value == 5)
 {
 Print(value.ToString() + “ = 5 :: true”);
 }
 else
 {
 Print(value.ToString() + “ = 5 :: false”);
 }
 }

We make a basic calculation and compare the resulting value if it’s 5 or not.
The program is branching into the first bracket, if the if condition is true and
it goes into the else branch otherwise. Remember that we use int variables,
so that in case you change the calculation to int value = 11 / 2; the con-
dition will still be true, since the result is rounded.

A more complex example follows on the last pages.

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 12

1 	 private void RunScript(int nr, ref object A)
2 	 {
3 	 int iterations = nr;
4 	 List<Extrusion> collectBreps = new List<Extrusion>();
5 	 List<Rectangle3d> collectRectangles = new List<Rectangle3d>();
6
7 	 // -- first loop used for x coordinates
8 	 for(int i = 0; i < iterations; i++)
9 	 {
10 	 // -- second loop used for y coordinates
11 	 for(int k = 0; k < iterations; k++)
12 	 {
13 	 // -- create the rectangles
14 	 Rectangle3d myRectangle = CreateRectangles(i, k);
15 	 collectRectangles.Add(myRectangle);
16 	 }
17 	 }
18
19 	 // -- grow rectangles
20 	 List<Rectangle3d> growCadidates = new 	
			 List<Rectangle3d>(collectRectangles); // copy our list
21 	 List<Rectangle3d> toRemoveRects = new List<Rectangle3d>();
22 	 List<Rectangle3d> grownRectangles = new List<Rectangle3d>();
23 	 int counter = 0; // security counter to avoid endless looing!
24 	 int maxIterations = 10;
25
26 	 do{
27 	 for(int i = 0; i < growCadidates.Count; i++)
28 	 {
29 	 Rectangle3d curRect = growCadidates[i];
30 	 // -- bit complicate copy of our rectangle...
31 	 GH_Rectangle ghRect = new GH_Rectangle(curRect);
32 	 Rectangle3d copyRect;
33 	 ghRect.CastTo(out copyRect);
34 	 // -- scale the rectangle
35 	 copyRect.Transform(Transform.Scale(copyRect.Center, 1.2));
36
37 	 // -- check for intersection
38 	 bool intersect = false;
39 	 int origID = -1;
40 	 foreach(Rectangle3d curTestRect in collectRectangles)
41 	 {
42 	 if (curTestRect.Center != curRect.Center)
43 	 {
44 	 var events = Rhino.Geometry.Intersect.Intersection.
				 CurveCurve(curTestRect.ToNurbsCurve(), copyRect.
				 ToNurbsCurve(), 0.001, 0);

Growing Rectangles

Finally we combine everything we have learned so far into one example.
We create a grid of rectangles again, but this time we grow the rectangles
until they intersect with another one. With the first part of the code we are
familiar with. The section where we grow the rectangles starts at line 20. We
use some additional lists to manage the growth process. In line 26 a do loop
starts, which is executed until all rectangles are grown to a size that they
would intersect with another one if they grow another step.

Since there is no direct copy or duplicate function for Rectangle3d, we used
a GH_Rectangle. Both are very similar, but the second one is implemented in
the Grasshopper namespace. The copied rectangle copyRect is now scaled
by the factor 1.2 in line 35.

Afterwards we test if the existing rectangles intersect with the new copyRect.
Therefore we use a foreach look in line 40. The conditional check in line 42
ensures that we don’t compare the same rectangles with each other. The
intersection computation is done in line 44 and returns an events variable of
the type Rhino.Geometry.Intersect.CurveIntersections. We just use it to
test if there is an intersection in line 45.

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 13

45 	 if (events.Count > 0)
46 	 {
47 	 intersect = true;
48 	 }
49 	 }
50 	 else // -- remember the index of the original rectangle
51 	 origID = collectRectangles.IndexOf(curTestRect);
52 	 }
53
54 	 // -- decide what to do if there is an intersection
55 	 if (intersect)
56 	 {
57 	 Print(“intersect”);
58 	 toRemoveRects.Add(curRect); // if it can’t grow further,
							 remove element
59 	 grownRectangles.Add(curRect);// add element to the final list
60 	 }
61 	 else
62 	 {
63 	 Print(“grow on”);
64 	 growCadidates[i] = copyRect; // assign new size for
							 intersection test
65 	 collectRectangles[origID] = copyRect; // assign new size for
								 imtersection test
66 	 }
67 	 }
68
69 	 // -- remove rectangles which can not grow anymore
70 	 foreach(Rectangle3d delRect in toRemoveRects)
71 	 {
72 	 growCadidates.Remove(delRect);
73 	 }
74
75 	 Print(“iteration “ + counter.ToString());
76 	 counter++;
77 	 } while(growCadidates.Count > 0 && counter < maxIterations);
78
79 	 // -- extrude the rectangles
80 	 foreach(Rectangle3d curRect in grownRectangles)
81 	 {
82 	 // -- convert the recangle to a nurbs and create a planar Brep
			 Surface in Rhino
83 	 NurbsCurve myCurve = curRect.ToNurbsCurve();
84 	 Rhino.Geometry.Extrusion myExtrusion = Extrusion.Create(myCurve,
			 rnd.Next(5, 20), true);
85 	 collectBreps.Add(myExtrusion);
86 	 }

From line 55 we implement the rules, what to do if there is an intersection or
not. In the list toRemoveRects we collect all rectangles which have reached
their maximum size and shall be removed from the growCadidates list after
the for loop. It is important to know that we can not remove elements from a
list which we currently iterate through. Therefore the elements are removed
afterwards in the foreach loop starting at line 70.

The assignment of the copyRect with the new size to the original list collec-
tRectangles in line 65 is important for comparing the new sized rectangles
with the further growing ones in the next iteration.

The do loop is repeated until the condition
while(growCadidates.Count > 0 && counter < maxIterations); is met.
This means we repeat the loop as long as all items from the growCadidates
list are removed or until a counter reaches a certain maximum value. The
counter is just used for security to avoid endless looping in case the growCa-
didates list will never be empty for some reasons.

With the rest of the code you are already familiar with. The resulting geome-
try is shown in the figure on the next page.

Now it’s time for your explorations!

Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Chapter 1 // Page 14

87
88 	 A = collectBreps;
89 	 }
90
91 	 // <Custom additional code>
92 	 private Random rnd = new Random();
93
94 	 private Rectangle3d CreateRectangles(int i, int k)
95 	 {
96 	 // -- create a rectangle
97 	 int maxRnd = 10;
98 	 double width = 1.0 + rnd.Next(0, maxRnd);
99 	 double heigth = 1.0 + rnd.Next(0, maxRnd);
100	 Point3d refPt = new Point3d(i * (maxRnd + 1.1),
			 k * (maxRnd + 1.1), 0);
101	 Point3d cornerA = new Point3d(refPt.X - (0.5 * width),
			 refPt.Y - (0.5 * heigth), 0);
102	 Point3d cornerB = new Point3d(refPt.X + (0.5 * width),
			 refPt.Y + (0.5 * heigth), 0);
103
104	 Rectangle3d myRect = new Rectangle3d(Plane.WorldXY,
			 cornerA, cornerB);
105	 return myRect;
106	 }

